近日,信息學院李國亮教授團隊在國際知名期刊Artificial Intelligence in Agriculture上發(fā)表題為“FGPointKAN++ point cloud segmentation and adaptive key plane recognition for cow body size measurement”的研究論文,該研究報道了融合點云分割與自適應平面識別技術的奶牛體尺參數智能測量新方法。
團隊圍繞現代畜牧業(yè)中奶牛體型精準測量這一問題,面對傳統(tǒng)人工測量效率低下且易受動物姿態(tài)影響的行業(yè)痛點,創(chuàng)新性提出基于深度學習的像素級點云分割模型與自適應關鍵切面識別算法,為實現規(guī)?;B(yǎng)殖場奶牛生長監(jiān)測自動化提供了可靠技術方案。該研究通過構建FGPointKNN++分割模型和AKCPR關鍵切面識別算法,實現不同姿態(tài)下奶牛像素級點云分割(mIoU達83.24%)與體尺參數自動測量。
實驗表明,該方法在真實養(yǎng)殖環(huán)境中針對不同姿態(tài)牛體高、體寬、胸圍和腹圍等關鍵表型參數的測量平均絕對百分比誤差分別低至2.07%、3.56%、2.24%和1.42%。同時,本研究使用開源數據集對本方法的有效性進行交叉驗證,證明該技術通過三維點云幾何特征解析,突破動態(tài)姿勢下的體尺精準計算瓶頸,為智能化畜牧養(yǎng)殖提供了可嵌入自動化管理系統(tǒng)的無接觸測量方案。
華中農大信息學院李嘉位老師為本文通訊作者,2023級碩士研究生周國源為第一作者;其他作者包括信息學院2023級博士研究生李勝,2024級碩士研究生趙健、王智文及工學院2023級碩士研究生葉文昊等。信息學院李國亮教授、動科動醫(yī)學院張淑君教授指導了該項工作。該研究得到新疆農墾科學院及其合作牧場大力支持。
據悉,Artificial Intelligence in Agriculture期刊重點關注人工智能在農業(yè)領域研究和應用,最新年度影響因子IF=12.4,為中科院一區(qū)TOP期刊,影響因子位列農業(yè)信息領域期刊排名首位。該團隊將以本成果基礎,持續(xù)積累原始數據、開展后續(xù)研究,加快養(yǎng)殖領域的智能化、無人化轉型進程。該研究獲得國家自然科學基金和中央高?;究蒲袠I(yè)務費專項資金資助。
原文鏈接:https://www.sciencedirect.com/science/article/pii/S2589721725000662
英文摘要:
Accurate and efficient body size measurement is essential for health assessment and production management in modern animal husbandry. To realize the segmentation of the point clouds at the pixel-level and the accurate calculation of body size for the dairy cows in different postures, a segmentation model (FGPointKAN++) and an adaptive key cutting plane recognition (AKCPR) model are developed. FGPointKAN++ introduces FGE module and KAN that enhance local feature extraction and geometric consistency, significantly improving dairy cow part segmentation accuracy. The AKCPR utilizes adaptive plane fitting and dynamic orientation calibration to optimize the key body size measurement. The dairy cow body size parameters are then calculated based on the plane geometry features. The experimental results show that mIoU scores of 82.92 % and 83.24 % for the dairy cow pixel-level point cloud segmentation results. The calculated Mean Absolute Percentage Errors (MAPE) of Wither Height (WH), Body Width (BW), Chest Circumference (CC) and Abdominal Circumference (AC) are 2.07 %, 3.56 %, 2.24 % and 1.42 %, respectively. This method enables precise segmentation and automatic body size measurement of dairy cows in various walking postures, showing considerable potential for practical applications. It provides technical support for unmanned, intelligent, and precision farming, thereby enhancing animal welfare and improving economic efficiency.
